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CHAPTER 2 : LINEAR ALGEBRA IN “The Mathemahce of Quantm Mechanics”
2.0+ Introduction

"
* e \amguazje of quatum mechanics- |inear alaebm’f

2.4 Vectors
* Vectore: just a way of s&acv.inj 4
L”Eﬁ- [.g] or [—!ﬂ (ooth of these are Column vectors)
\“kg- s 243 or C-3 3 43 (both of fhese ave vow vectors)
> def: o column of numbers
“ the ¥ of #s is known 0s the dimension of the vector
“ v, is the st component of T, u; the 2nd, and o on
* A n-dimensional veal vector liee in R™. A complex n-dimewsional vector lies in €™
* Vector addifen: it v, = (V] and ® * W, ¢d+m- \\Irffﬁﬂ.
L More generally - 1 T ond ® ove arbitary - dimensional vectors, e jt com?onam of VD, denoted (T4 is Uj+w;
" \e stolay_wwitiplication: & ©= L) and ¢ ie o scalay, ¢v = el
> For veckors of any dimension, (c@);= cy;
S scalar wu ki plicodion b\l a pos‘rﬁvc \nteger doesn't chanﬁc it's orientation.
“ Scalar muthplicofion by a V\CSa‘H\lC ivr\'cgcr inverds  it's divechoh.
“\ector space: ne collechon of al) +he complex Hs of a guen dimension with vectov addition 3 scalor multiplication
“ Mostack def: ake o collection of mothematical ogjects (a se¥) with a well-defined addihown § scalar wutiplicohon. T4

® the set ic cloced under addifion § scalar multiplcation, +hal's the vecul of adding 2 oloirary oljects from the set, or the

scolar  muthiphcation of ony objectss 1 alco in the sets
@ e set, the addition and scalar Muliphcation Ffollow all properties.

2.2 - Madrices
" Makix- o bok of numbers.
hd Eg- M= [_% 'ﬂ
% Given any makrix Q, Qj ic the % in the UM row 3 i column.
S Twa Watrix has m rows and n columhs, ¢ is a M¥n dimensional matrix.
* Matvix _addikion (Mv NYj= Migs Nyj
" Mabciy scalar_muliplication: (¢M)yj= ¢ (M)
" Mahiv_multiplcation: (AN = 2 MicNig
L M omust have the same ¥ of Columns as N has vows
“ ecause o this property, matvices can e Anougnt of 0 funchions on  veckors
“ Not  commutative
+ Linearily* 0 linedr function (or o linear map, or a linear operator) f, is a function that Sotisfies:
B fxagd=fLD+ £y or any mputr z ond g
@j—(cx\=°§(7‘3 for any wput x ond amy scalar c.
L Matvices can be -Hr\ou\tjlﬁ of as linear funchons!

2.3~ Complex Covx\‘)uﬂoﬁe, Transpose, ond Coh\)ug(ﬂ‘e Transpose _ ‘2
: MmLMgv__mmp.\u_m@Asgie‘- w v=1Y, M- Uﬁ ‘;1, Hhen 5‘-&}, F\‘-[;fg }
L Genevol des: (3)= Vi, (W) = RTJ
* Matvix [vectoy +rONSpose: the transpose of matvix M, denoted M is such that the w* yow of W% is the same as the v column of M.
Lpee: i o= (21, m=L§ ;], Hen U= (a, 0], m*: (G 4]
G General def: G)i= vy (MY) i < My
“ The tranpose of & M*n matrix is o wxM matvik.
° Matvix ] vector iu

* the trancpose of Hhe Complex covgujme of o wmatrix/ vector.
G Geneval def: (M) = My
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2.4 Toner Products 3 Novms

* Inner Product: T = 3%1?3"'4‘
L’mso caled dot product or scalar product
L he vectors must hove 4he some dimension

Hilbert Space® a vector space with a well-defined inner product (the collechion of all m-d veclors with -the inner onducr)
: Qv;\—_\ﬂqgmg] Vectors: oka perpendicular — € the nner produck of the 2 vectors js O

" Veckov norm: aka the length of o wecor — WSl =455 =479

> A vedhor with norm 4 ie called o unit vector.

< lea)< | 5]

\
> Norwalizing : eca\mﬂ 0 Wonzero vector U b\t’ T Yo make it have o unit len3+h.

2.5 Basis

" Bosis’ 0 finde set of vectors that can be used 4o deiibe ony other vectors of +the Same dimension. A set of M linearly wndependant vectors in LR
ic called a loasis of C"/R™
2o Tv]- ' o
G oex. (Vi [\r;l’ v, [01* v, \] {-gn'g;s
Kue(—ﬂqvﬂsf

ineor Lombinalion’ o combination of any 4F of vectors using vector addition 3 swlar wultiplication.

Y A et of vestors s livearly dependant i€ ar least | of the vectors can be wrifen as alinear combingtion of the others.
U Te 0 eet of vectors iswt linearly dependard, they've linearly indepencawt.

. Or;magonal Basis® & basis where each vector has worm A and each pair of vectors s or+\n030vw\.

* Standard (cononica) basie: the 0osis used  when explicitly writing o Vector.

L Ao known 0 the computational \asis

2.6 Toner Product as Pro')ecﬁon \
. r—\—\/\agono\l projechion’ Given n-dimensional vectors T, ® in €7 +he prod*edion of Tonto D, ez = |wll -V
=Y

b The projection e gven by inner product benween the Uit Veckor along ® ond ¥
Y Pis o o scolor numoer ( it's the component a\on3 w)

2% Speciol Matvices

" Tdenty matrix’ defined such #aat for every m x N mahvix M, ond any vecor ¥ in €Y, IM=MI-M gd To=¢.
" dencted T (o sowefwes T)
% preforms no achon when opevo&'ma— the output s olways Hhe Same ds the owq)u’f.

* Unitary matvix: () o modvix Haat  sahsfy UUT= UTU=T

CHAPTER 4° LINEAR ALGEBRA REVIEW.. IN * Quontum Theory, Groups and Represemtations’

4.4 Vector Spaces § Linear Maps

" A basis (set of m linearly independant vectors) e}, an arbitary veclor v € V (a vedor space) can be wrilten gs:
VI, ¢ eat Y Ule OF AT

" Having basis fe;3 ollows the ockon of a linear operotor L oon (Li-u-elr—’\_ve\l') a5  matrin muHi?licaﬁon!
['2} Lu Ly Lin Vi
V] \la o)

4.2 Dual Vectur SPaces

* Dual vedtor space: For ' o vector space over o field ki the dual vector epace \V* is the vector space of all linear maps U=k, ie
V= {4:V2K such that {(O\U'*ﬂW)=<X€(U')*,3£(W)} for 0,BEK, mwéT.
" Transpose transformation: 4he tronspose of L is +he linear +ransformation L*:y*— \* given loy (L O)W)=E(Ly) for L€V, vV
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